Raytheon / Lockheed Martin FGM-148 Javelin Anti-Tank Missile Launcher
Javelin is a fire-and-forget missile with lock-on before launch and automatic self-guidance. The system takes a top-attackflight profile against armored vehicles (attacking the top armor, which is generally thinner), but can also take a direct-attack mode for use against buildings. This missile also has the ability to engage helicopters in the direct attack mode.[4] It can reach a peak altitude of 150 m (500 ft) in top-attack mode and 60 m in direct-fire mode. It is equipped with an imaging infraredseeker. The tandem warhead is fitted with two shaped charges: a precursor warhead to detonate any explosive reactive armor and a primary warhead to penetrate base armor.
The missile is ejected from the launcher so that it reaches a safe distance from the operator before the main rocket motorsignite; a "soft launch arrangement".[7] This makes it harder to identify the launcher; however, back-blast from the launch tube still poses a hazard to nearby personnel. Thanks to this "fire and forget" system, the firing team may change their position as soon as the missile has been launched, or prepare to fire on their next target while the first missile is still in the air.[6]
The missile system is most often carried by a two-man team consisting of a gunner and an ammo bearer, although it can be fired with just one person if necessary. While the gunner aims and fires the missile, the ammo bearer scans for prospective targets, watches for threats, such as enemy vehicles and troops, and ensures that personnel and obstacles are clear of the missile's back blast.
The Javelin was used by the US Army, the US Marine Corps and the Australian Special Forces in the 2003 Invasion of Iraq[4] on Iraqi Type 69 and Lion of Babylon tanks. In one short engagement, a platoon of U.S. special forces soldiers equipped with Javelins destroyed two T-55 tanks, eight armored personnel carriers, and four troop trucks.[18]
During the War in Afghanistan, the Javelin was used effectively in counter-insurgency (COIN) operations. Initially, soldiers perceived the weapon as unsuitable for COIN operations due to its destructive power, but trained gunners were able to make precision shots against enemy positions with little collateral damage. The Javelin filled a niche in U.S. weapons systems against DShK heavy machine guns and B-10 recoilless rifles—weapons like the AT4 and M203 were powerful enough, but had insufficient range; conversely, while medium and heavy machine guns and automatic grenade launchers[clarification needed] had the range, they lacked the power; and heavy mortars, which had both a good range and more than enough power, lacked precision. The Javelin, as well as the TOW, had enough range, power, and accuracy to counter standoff engagement tactics employed by enemy weapons. With good locks, the missile is most effective against vehicles, caves, fortified positions, and individual personnel; if enemies were inside a cave, a Javelin fired into the mouth of the cave would destroy it from the inside, which was not possible from the outside using heavy mortars. The psychological effect of the sound of a Javelin firing sometimes caused insurgents to disengage and flee their position. Even when not firing, the Javelin's CLU was commonly used as a man-portable surveillance system.[19]
NFOV (Narrow Field of View)
The third field of view is a 12× thermal sight used to better identify the target vehicle. Once the CLU has been focused in WFOV, the gunner may switch to NFOV for target recognition before activating Seeker FOV.
Seeker Field of View
Once the best target area is chosen, the gunner presses one of the two triggers and is automatically switched to the fourth view; the Seeker FOV, which is a 9x magnification thermal view. This process is similar to the automatic zoom feature on most modern cameras. This view is also available along with the previously mentioned views, all of which may be accessed with press of a button. However, it is not as popular as a high magnification view takes longer to scan a wide area. This view allows the gunner to further aim the missile and set the guidance system housed inside the actual missile. It is when in this view that information is passed from the CLU, through the connection electronics of the Launch Tube Assembly, and into the missile's guidance system. If the gunner feels uncomfortable with firing the missile, he can still cycle back to the other views without having to fire the missile. When the gunner is comfortable with the target picture, he pulls the second trigger and establishes a "lock”. The missile launches after a short delay.
Lightweight CLU
The U.S. Army is developing a new CLU as an improvement over the Block I version. The new CLU is 70 percent smaller, 40 percent lighter, and has a 50 percent battery life increase. Features of the lightweight CLU are: a long-wave IR sensor; a high-definition display with improved resolution; integrated handgrips; a five megapixel color camera; a laser point that can be seen visibly or through IR; a far target locator using GPS, a laser rangefinder, and a heading sensor; and modernized electronics.
Propulsion
Most rocket launchers require a large clear area behind the gunner to prevent injury from backblast. To address this shortcoming, without increasing recoil to an unacceptable level, the Javelin system uses a soft launch mechanism. A launch motor using conventional rocketpropellant ejects the missile from the launcher, but stops burning before the missile clears the tube. The flight motor is ignited only after a delay to allow for sufficient clearance from the operator. To save weight, the two motors are integrated with a burst disc between them; it is designed to tolerate the pressure of the launch motor from one side, but to easily rupture from the other when the flight motor ignites. The motors use a common nozzle, with the flight motor's exhaust flowing through the expended launch motor. Because the launch motor casing remains in place, an unusual annular (ring-shaped) igniter is used to start it; a normal igniter would be blown out the back of the missile when the flight motor ignited and could injure the operator. Since the launch motor uses a standard NATO propellant, the presence of lead beta-resorcinol as a burn rate modifier causes an amount of lead and lead oxide to be present in the exhaust; for this reason, gunners are asked to hold their breath after firing.
In the event that the launch motor malfunctions and the launch tube is overpressurized—for example, if the rocket gets stuck—the Javelin missile includes a pressure release system to prevent the launcher from exploding. The launch motor is held in place by a set of shear pins, which fracture if the pressure rises too high and allow the motor to be pushed out the back of the tube.
No comments:
Post a Comment